Question:
A long array A[] is given to you. There is a sliding window of size w which is moving from the very left of the array to the very right. You can only see the w numbers in the window. Each time the sliding window moves rightwards by one position. Following is an example:
The array is [1 3 -1 -3 5 3 6 7], and w is 3.
Window position Max
--------------- -----
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
Input: A long array A[], and a window width w
Output: An array B[], B[i] is the maximum value of from A[i] to A[i+w-1]
Requirement: Find a good optimal way to get B[i]
// Option A: Using MaxQueue//// What is max queue, similar to max stackprivate static class MaxQueue{ private Queuequeue = new LinkedList<>(); private Stack max = new Stack<>(); void offer(Integer t) { if (t == null) return; queue.offer(t); if (max.empty() || t >= max.peek()) max.push(t); } Integer poll() { if (queue.isEmpty()) return null; Integer t = queue.poll(); if (t >= max.peek()) max.pop(); return t; } Integer max() { if (max.empty()) return null; return max.peek(); }}// Time: O(n)// Space: O(n + w)public int[] slidingWindowMax(int[] A, int w){ // Assumptions: // A not null, not empty, length must >= w // Init MaxQueue MaxQueue maxQueue= new MaxQueue(); for (int i = 0 ; i < w ; i ++) { maxQueue.offer(A[i]); } // Result int[] B = new int[A.length - w + 1]; B[0] = maxQueue.max(); for (int i = w ; i < A.length ; i ++) { maxQueue.poll(); maxQueue.offer(A[i]); B[i - w + 1] = maxQueue.max(); } return B;}/// Option B: Dequeue//// It has a better option without using extra stack.//// Time: O(n)// Space: O(n)public int[] slidingWindowMax(int[] A, int w){ // Deque // See // // [end ... head] // Order : >> // Every time push new element into end, still keep the order // Deque queue = new LinkedList<>(); // Init deque for (int i = 0 ; i < w ; i ++) { offer(queue, A[i]); } // Result int[] B = new int[A.length - w + 1]; B[0] = max(queue); for (int i = w ; i < A.length ; i ++) { queue.offer(A[i]); B[i - w + 1] = max(queue); } return B;}private void offer(Deque queue, int t){ while (!queue.isEmpty() && queue.peekLast() <= t) { queue.pollLast(); } queue.offerLast(t);}private void max(Dequeue queue){ return queue.peekFirst();}